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Local shape descriptors for neuron 
segmentation
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We present an auxiliary learning task for the problem of neuron 
segmentation in electron microscopy volumes. The auxiliary task consists 
of the prediction of local shape descriptors (LSDs), which we combine with 
conventional voxel-wise direct neighbor affinities for neuron boundary 
detection. The shape descriptors capture local statistics about the neuron 
to be segmented, such as diameter, elongation, and direction. On a study 
comparing several existing methods across various specimen, imaging 
techniques, and resolutions, auxiliary learning of LSDs consistently 
increases segmentation accuracy of affinity-based methods over a range 
of metrics. Furthermore, the addition of LSDs promotes affinity-based 
segmentation methods to be on par with the current state of the art for 
neuron segmentation (flood-filling networks), while being two orders of 
magnitudes more efficient—a critical requirement for the processing of 
future petabyte-sized datasets.

The goal of connectomics is the reconstruction and interpretation of 
neural circuits at synaptic resolution. These wiring diagrams provide 
insight into the inner mechanisms underlying behavior and help drive 
future theoretical experiments1–4. Additionally, the generation of con-
nectomes complements existing techniques such as calcium imaging 
and electrophysiology where the resolution is often not sufficient to 
parse the circuitry in detail5,6.

Currently, only electron microscopy (EM) allows imaging of neural 
tissue at a resolution sufficient to resolve individual synapses and fine 
neural processes. Two popular methods for imaging these volumes are 
serial block-face scanning EM (SBFSEM) and focused ion beam scanning 
EM (FIB-SEM). While the former technique is faster and generates high 
lateral resolution, it results in lower axial resolution owing to section 
slicing. The latter method produces isotropic resolution by etching the 
face of the volume with a focused ion beam before imaging. However, this 
method is slower than serial section approaches. Previous work7 provides 
a thorough overview of these imaging approaches and others, including 
serial section transmission EM (ssTEM) and automated tape-collecting 
ultramicrotome scanning EM (ATUM-SEM). All methods have been used 
to generate invaluable datasets for the connectomics community8–15.

Depending on the specimen and the circuit of interest, current EM 
acquisitions produce datasets ranging from several hundred terabytes 
to petabytes. For instance, the raw data of a full adult fruit fly brain (FAFB) 
comprises ~50 teravoxels of neuropil16. Even sub-volumes taken from 
vertebrate brains, which do not contain brain-spanning circuits, result in 
massive amounts of data. One example is a region taken from a zebrafinch 
brain containing ~106 μm3 (~663 gigavoxels) of raw data17. A larger volume 
of mouse visual cortex was recently imaged, comprising ~3 × 106 μm3 
(~6,614 gigavoxels)11–13,18,19. A 1.4 petabyte volume taken from human cor-
tex further demonstrates the rapid advances in massive dataset acquisi-
tion20. To reconstruct circuits in a full mouse brain, however, it will require 
the acquisition of around 1 exabyte of raw data (1,000,000 terabytes)21.

With datasets of this magnitude, purely manual reconstruction 
of connectomes is infeasible. On average, manual tracing in a mouse 
tissue takes ~1–2 h per millimeter2,22. Larval tissue averages ~13.7 h per 
millimeter1, which is comparable to reported tracing speeds of 4–13 
hours per millimeter in the Drosophila dataset FAFB10,29, owing to the 
challenging nature of invertebrate neuropil. Even the small brain of 
a Drosophila contains an estimated 100,000 neurons, which would 
require ~125 years of manual effort to trace each neuron to completion.
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•	 Flood-filling networks (FFN): a single segmentation per investi-
gated dataset from the current state of the art approach27.

•	 Multitask LSDs (MTLSD): a network to predict both LSDs and direct 
neighbor affinities in a single pass, (Fig. 1e). Similar to LR, the LSDs 
act as an auxiliary learning task for the direct neighbor affinities.

•	 Auto-context LSDs (ACLSD): an auto-context setup, where LSDs 
were predicted from one network and then used as input to a 
second network in which affinities were predicted.

•	 Auto-context LSDs with raw (ACRLSD): same approach as ACLSD, 
but the second network also receives the raw data as input in addi-
tion to the LSDs generated by the first network.

All network architectures for the ZEBRAFINCH and FIB-SEM 
volumes are described in detail in the Supplementary Note. To 
fairly evaluate accuracy as a function of only the used segmen-
tation method, we made sure to hold other contributing factors 
constant. We trained each affinity-based network with the same 
pipeline (for example, data augmentations and optimizer) and same 
hyper-parameters for each dataset. We also used the masks to restrict 
segmentation and evaluation to dense neuropil. These are the same 
masks used by FFN, thus comparing pure neuron segmentation 
performance of each method.

Since proofreading of segmentation errors is currently the main 
bottleneck in obtaining a connectome14, the metrics to assess neuron 
segmentation quality should ideally reflect the time needed for proof-
reading. This requirement is not easily met, since it depends on the 
tools and strategies used in a proofreading workflow. Currently used 
metrics aim to correlate scores with the time needed to correct errors 
on the basis of assumptions about the gravity of certain types of errors. 
A common assumption is that false merges take substantially more time 
to correct than false splits, although next-generation proofreading 
tools challenge this conception34–36.

In this study, we report neuron segmentation quality with two 
established metrics: variation of information (VOI) and expected run 
length (ERL). In addition to those metrics, we propose the min-cut met-
ric (MCM), designed to measure the number of graph edit operations 
needed to perform in a hypothetical proofreading tool (Supplementary 
Note and Extended Data Fig. 1).

Segmentation accuracy in a ZEBRAFINCH SBFSEM dataset
A volume from neural tissue of a songbird was the largest dataset 
used in this study17,27. This volume consists of a ~106 μm3 region of a 
zebrafinch brain, imaged with SBFSEM at a resolution of 9 × 9 × 20 nm 
(x × y × z) (Fig. 3 and Supplementary Note). For our experiments, we 
used a slightly smaller region completely contained inside the raw 
data with edge lengths of 87.3, 83.7 and 106 μm, respectively (x, y and 
z). We refer to this region as the BENCHMARK region of interest (ROI).

For each affinity-based network described above, we used 33 vol-
umes containing a total of ~200 μm3 (~6 μm3 average per volume) of 
labeled data27 for training. We then ran prediction on the BENCHMARK 
ROI, using a block-wise processing scheme.

Using the resulting affinities, we generated two sets of supervox-
els: one without any masking and one constrained to neuropil using a 
mask27. Additionally, we filtered supervoxels in regions in which the 
average affinites were lower than a predefined value (for example, glia). 
Supervoxels were agglomerated using one of two merge functions28, to 
produce the region adjacency graphs used for evaluation.

We then produced segmentations for ROIs of varying size centered 
in the BENCHMARK ROI, to assess how segmentation measures scale 
with the volume size. In total, we cropped ten cubic ROIs ranging from 
~11 μm to ~76 μm edge lengths, in addition to the whole BENCHMARK 
ROI. We will refer to the respective ROIs by their edge lengths. For each 
affinity-based network, in each ROI, we created segmentations for a 
range of agglomeration thresholds (resulting in a sequence of seg-
mentations ranging from over- to undersegmentation). Additionally, 

Consequently, automatic methods for the reconstruction of  
neurons and identification of synapses have been developed. Over 
the past decade, methods targeting relatively small volumes have 
pioneered the reconstruction of neurons23,24 and synapses25,26. More 
recently, these efforts have been improved to tackle the challenges 
of large datasets for neurons11,27–29, synaptic clefts16 and synaptic part-
ners30,31. With the help of an automatic neuron segmentation method, 
neuron tracing times decreased by a factor of 5.4 - 11.629, effectively 
trading compute time for human tracing time.

However, given the daunting sizes of current and future EM data-
sets, limits on available compute time become a concern. Future algo-
rithms do not only need to be more accurate to further decrease manual 
tracing time but also computationally more efficient to be able to 
process large datasets in the first place. Consider the computational 
time required by the current state of the art, flood-filling network 
(FFN): assuming linear scalability and the availability of 1,000 contem-
porary GPUs (or equivalent hardware), the processing of a complete 
mouse brain would take about 226 years. This example alone goes to 
show that the objective for future method development should be the 
minimization of the total time spent to obtain a connectome, including 
computation and manual tracing. Therefore, automatic methods for 
connectomics need to be fast, scalable (that is, trivially parallelizable) 
and accurate.

To address this, we developed local shape descriptors (LSDs) as 
an auxiliary learning task for boundary detection. The motivation 
behind LSDs (distinct from previous shape descriptors32) is to pro-
vide an auxiliary learning task that improves boundary prediction 
by learning statistics describing the local shape of the object close 
to the boundary. Previous work demonstrated a similar technique 
to yield superior results over boundary prediction alone33. Here, we 
extend on this idea by predicting for every voxel not just affinities 
values to neighboring voxels, but also statistics extracted from the 
object under the voxel aggregated over a local window, specifically 
(1) the volume, (2) the voxel-relative center of mass and (3) pair-
wise coordinate correlations (Figs. 1 and 2). We demonstrate that 
when using LSDs as an auxiliary learning task, segmentation results  
are competitive with the current state of the art, albeit two orders 
of magnitude more efficient to compute. We hope that this tech-
nique will allow laboratories to generate accurate neuron segmen-
tations for their connectomics research using standard compute 
infrastructure.

Results
Here, we present experimental results of the LSDs for neuron segmenta-
tion. We compare the accuracy of LSD segmentations against several 
alternative methods for affinity prediction and FFN on three large and 
diverse datasets we refer to as ZEBRAFINCH17, HEMI-BRAIN14 and FIB-258. 
Furthermore, we compare the computational efficiency of different 
methods and analyze the relationship between different error metrics 
for neuron segmentations.

Investigated methods
For each dataset we investigated seven methods:

•	 Direct neighbor affinities (BASELINE): baseline network with a 
single voxel affinity neighborhood and mean squared error (MSE) 
loss23. We trained a three-dimensional (3D) U-NET to predict 
affinities.

•	 Long-range affinities (LR): same approach as the BASELINE net-
work but uses an extended affinity neighborhood with three extra 
neighbors per direction24. The extended neighborhood func-
tions as an auxiliary learning task to improve the direct neighbor 
affinities.

•	 MALIS loss (MALIS): same approach as the BASELINE network, 
but using MALIS loss28 instead of plain mean squared error (MSE).

http://www.nature.com/naturemethods
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we cropped the provided FFN segmentation accordingly and relabeled 
connected components.

We used a set of 50 manually ground-truthed skeletons27, compris-
ing 97 mm, for evaluation. For each network we assessed VOI and ERL 
on each ROI. For affinity-based methods we also computed the MCM on 
the 11, 18 and 25 μm ROIs. Additionally, we used 12 validation skeletons 
consisting of 13.5 mm to determine the optimal thresholds for each 
network on the BENCHMARK ROI (Supplementary Note).

We find that LSDs are useful for improving the accuracy of direct 
neighbor affinities and subsequently the resulting segmentations 
(Fig. 4). Specifically, LSD-based methods consistently outperform 
other affinity-based methods over a range of ROIs, whether used in a 
multitask (MTLSD) or auto-context (ACLSD and ACRLSD) architecture 
(Fig. 4a and Supplementary Note). In terms of segmentation accuracy 
according to VOI, the best auto-context network (ACRLSD) performs 
on par with FFN (Fig. 4a).

We find that the ranking of methods depends on the size of the 
evaluation ROI. Even for monotonic metrics like VOI, we see that per-
formance on the smallest ROIS (up to 54 μm) does not extrapolate to 
the performance on larger datasets.

We also investigated how ERL varies over different ROI sizes. To 
this end, we cropped the skeleton ground-truth to the respective 
ROIs and relabeled connected components (as we did for the VOI 
evaluation). However, the resulting fragmentation of skeletons heavily 
impacts ERL scores: ERL cannot exceed the average length of skeletons, 
and thus the addition of shorter skeleton fragments can result in a 
decrease of ERL, even in the absence of errors. ERL measures do not 
progress monotonically over ROI sizes and absolute values are likely 

not comparable across different dataset sizes (Fig. 4b). In addition, 
the ranking of methods for a given ROI size varies substantially over 
different ROI sizes. The discrepancy between the computed ERL and 
maximum possible ERL (or the ground-truth ERL) further emphasizes 
this point (Supplementary Note).

Furthermore, the ERL metric is by design very sensitive to merge 
errors, as it considers a whole neuron to be segmented incorrectly if it 
was merged with even only a small fragment from another neuron. Thus, 
merge errors contribute disproportionally to the ERL computation. In 
addition, the contribution depends on the sizes of the merged segments. 
Merging a small fragment of one neuron into an otherwise correctly 
reconstructed large neuron will have a larger negative impact on the ERL 
than merging two small fragments from different neurons, although the 
effort needed to resolve that error is likely the same. We observe that this 
property leads to erratic scores across different volume sizes (Fig. 4b and 
Supplementary Note) that no longer reflect the amount of time needed 
to proofread the resulting segmentation. The sensitivity to merge errors 
also contributes to the observed differences between the ERL scores of 
the LSD-based methods and FFN (Fig. 4b). Although ACRLSD has a lower 
total VOI than FFN (2.239 versus 2.256), ACRLSD has a higher merge rate 
than FFN with a (ACRLSD VOI merge score of 1.436 versus FFN VOI merge 
score of 1.118), resulting in substantially different ERL scores of 13.5 μm 
for ACRLSD and 16.7 μm for FFN (Supplementary Note).

The high variability between metrics and ROI sizes prompted 
us to develop a metric that aims to measure proofreading effort. We 
developed MCM to count the number of interactions needed to split 
and merge neurons to correctly segment the ground-truth skeletons, 
assuming that a min-cut-based split tool is available. Owing to the 
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Fig. 1 | LSD and network architecture overview. a, EM data imaged with FIB-SEM 
at 8 nm isotropic resolution (FIB-25 dataset8). Arrows point to example individual 
neuron plasma membranes. Dark blobs are mitochondria. Scale bar, 300 nm.  
b, Label colors correspond to unique neurons. c, LSD mean offset schematic.  
A Gaussian (G) with fixed sigma (σ) is centered at voxel (v). The Gaussian is then 
intersected with the underlying label (colored region) and the center of mass 
of the intersection (cm) is computed. The mean offset (mo) between the given 
voxel and center of mass is calulated (among several other statistics), resulting 
in the first three components of the LSD for voxel (v). d, Predicted mean offset 

component of LSDs (LSD[0:3]) for all voxels. A smooth gradient is maintained 
within objects while sharp contrasts are observed across boundaries. Three-
dimensional vectors are RGB color encoded. e, Network architectures used. 
The ten-dimensional LSD embedding is used as an auxiliary learning task for 
improving affinities. In a multitask approach (MTLSD), LSDs and affinities are 
directly learnt. In an auto-context approach, the predicted LSDs are used as input 
to a second network to generate affinities both without raw data (ACLSD) and 
with raw data (ACRLSD).
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computational cost associated with MCM (stemming from repeated 
min-cuts in large fragment graphs), we limited its computation to 
the three smallest investigated ROIs in this dataset. As expected, we 
observe a linear increase in MCM with ROI size across different methods 
(Fig. 4c). Furthermore, we see that MCM and VOI mostly agree on the 
ranking of methods (Fig. 4d and Supplementary Note), which suggests 
that VOI should be preferred to compare segmentation quality in the 
context of a proofreading workflow that allows annotators to split false 
merges using a min-cut on the fragment graph. Since the MCM requires 
a supervoxel graph, it was not possible to compute on the single FFN 
segmentation provided.

Binary masks are commonly used to limit neuron segmentation 
to dense neuropil and exclude confounding structures like glia cells. 
Recent approaches to processing large volumes have incorporated 
tissue masking at various points in the pipeline11,14,27,29 to prevent errors 
in areas that were underrepresented in the training data. Our results 
confirm the importance of masking. We used a neuropil mask which 
excluded cell bodies, blood vessels, myelin and out-of-sample back-
ground voxels (Supplementary Note). Across all investigated methods, 
the accuracy degraded substantially on larger ROIs when processed 
without masking (Fig. 4f, Supplementary Note).

Segmentation accuracy in Drosophila FIB-SEM datasets
We also evaluated all architectures on two Drosophila datasets imaged 
with FIB-SEM at 8 nm resolution (Figs. 3 and 5 and Supplementary Note) 
and found results to generally be consistent with the ZEBRAFINCH 
(Extended Data Fig. 2 and Supplementary Note). Since the majority 
of large connectomics datasets are imaged with ssTEM from mamma-
lian tissue, we conducted an extended experiment to evaluate several 
networks on small volumes of mouse visual cortex19. We generally find 
consistent results to the other datasets; LSD networks outperform 
baseline methods most noticeably when used in an auto-context setup 
(Supplementary Note). While the available volumes were likely too 
small to directly infer performance on larger data, we expect LSDs to 
benefit from the same data-specific processing strategies that other 
methods routinely use.

Computational efficiency of LSD-based networks
In addition to being accurate, it is important for neuron segmentation 
methods to be fast and computationally inexpensive. As described in 
the introduction, the acquisition size of datasets is growing rapidly 
and approaches should therefore aim to complement this trajectory. 
Since LSDs only add a few extra feature maps to the output of the U-NET, 
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Fig. 2 | Visualization of LSD components. a, Surface mesh of a segmented 
neuron from FIB-SEM data (FIB-258 dataset). Scale bar, 1 μm. b, RGB mapping 
of LSD components 3, 4 and 5. Neural processes are colored with respect to 
the directions they travel. Intermediate directions are mapped accordingly 
(see |Cartesian coordinate inset). c, LSD predictions in corresponding two-
dimensional slices to the three boxes shown in a,b; neuron highlighted in white. 

Columns signify neuron orientation (blue, lateral movement; green, vertical 
movement; red, through-plane movement). Rows correspond to components 
of the LSDs. First row, mean offset; second and third rows, covariance of 
coordinates (LSD[3:6] for the diagonal entries, LSD[6:9] for the off-diagonals), 
second row shows mapping seen in b; last row, size (number of voxels inside 
intersected Gaussian). Scale bar, 250 nm.
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Fig. 3 | Overview of datasets. a, ZEBRAFINCH dataset17. Thirty-three gound truth 
volumes were used for training. b, Full raw dataset. Scale bar, 15 μm. c, Single 
section shows ground-truth skeletons. Zoom-in scale bar, 500 nm. d, Validation 
skeletons (n = 12). e, Testing skeletons (n = 50). f, HEMI-BRAIN dataset14. Eight 
ground-truth volumes were used for training. g, Full HEMI-BRAIN volume. Scale 
bar, 30 μm. Experiments were restricted to ELLIPSOID BODY (circled region). 
h, Volumes used for testing. i, Example sparse ground-truth testing data. Scale 

bar, 2.5 μm. j, Zoom-in scale bar, 800 nm. k, Example 3D renderings of selected 
neurons. l, FIB-25 dataset8. Four ground-truth volumes were used for training.  
m, Full volume with cutout showing testing region. Scale bar, 5 μm. n, Cross 
section with sparsely labeled testing ground-truth. o, Zoom-in scale bar, 750 nm. 
p, Sub-volume corresponding to zoomed-in plane. q, Subset of full ROI testing 
neurons. Small volume shown for context.
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there is almost no difference in computational efficiency compared to 
BASELINE affinities. LSD-based methods can therefore be parallelized 
in the same manner as affinities, making them a good candidate for 
the processing of very large datasets or environments with limited 
computing resources.

In our experiments, we computed prediction and segmentation 
of affinity-based methods in a block-wise fashion, allowing parallel 
processing across many workers (Fig. 6). This allowed for efficient 
segmentation following prediction (Supplementary Note).

When considering computational costs in terms of floating point 
operations (FLOPS), we find that the ACRLSD network (the computation-
ally most expensive of all LSD architectures) is two orders of magnitude 
more efficient than FFN, while producing a segmentation of compa-
rable quality (Fig. 4e). For this comparison, we computed FLOPS of all 
affinity-based methods during prediction (Supplementary Note). For 
FFN, we used the numbers reported in ref. 27, limited to the forward and 
backward passes of the network, that is, the equivalent of the prediction 
pass for affinity-based methods. We limit the computational cost analysis 
to GPU operations, since FLOP estimates on CPUs are unreliable and the 
overall throughput is dominated by GPU operations. We therefore only 
consider inference costs for all affinity-based networks, since agglomera-
tion is a post-processing step done on the CPU. To keep the comparison to 
FFN fair, we do not count FLOPS during FFN agglomeration, although it 
involves a substantial amount of GPU operations. Generally, affinity-based 
methods are more computationally efficient than FFN by two orders of 
magnitude when considering FLOPS (Supplementary Note).

FFN throughput can be improved by a factor of five using a 
‘coarse-to-fine’ approach in which multiple models are trained at 
different scales and then the segmentations are merged using an 
oversegmentation-consensus27. Data at the highest resolution is often 
not necessary to resolve large objects (such as axonal tracks and bou-
tons). Since we computed every affinity-based method on the highest 
resolution, further speed ups are likely achievable by adapting these 
methods to run at different resolutions and are a logical next step.

Discussion
The main contribution of this work is the introduction of LSDs as an 
auxiliary learning task for neuron segmentation. All methods, datasets 
and results are publicly available (https://github.com/funkelab/lsd), 
which we hope will be a useful starting point for further extensions and 
a benchmark to evaluate future approaches in a comparable manner.

Auxiliary learning tasks have been shown to improve network 
performance across different applications. One possible explanation 
for why auxiliary learning is also helpful for the prediction of neuron 
boundaries is that the additional task incentivizes the network to 
consider higher-level features. Predicting LSDs is likely harder than 
boundaries, since additional local structure of the object has to be con-
sidered. Merely detecting an oriented, dark sheet (for example, plasma 
membranes) is not sufficient; statistics of the whole neural process have 
to be taken into account. Those statistics rely on features that are not 
restricted to the boundary in question. Therefore, the network is forced 
to make use of more information in its receptive field than is necessary 
for boundary prediction alone. This, in turn, increases robustness to 
local ambiguities and noise for the prediction of LSDs. As a welcome 
side effect, it seems that the network learns to correlate boundary 
prediction with LSD prediction, which explains why the boundary 
prediction benefits from using the LSDs as an auxiliary objective.

In an auto-context learning strategy, the quality of a prediction is 
refined by using a cascade of predictors37. We loosely adapted this idea 
when designing our networks (ACLSD and ACRLSD) and found that it 
helped to improve segmentations across all datasets. We tested if this 
increase in accuracy was consistent when using affinities as the input 
to the second network (that is, a BASELINE auto-context approach, 
ACBASELINE) and found that it made no substantial improvements 
to the BASELINE network (Extended Data Fig. 3). We hypothesize that 
predicting affinities from affinities is too similar to predicting affini-
ties from raw EM data. Specifically, we suspect that the ACBASELINE 
network simply copies data in the second pass rather than learning 
anything new. Easy solutions, such as looking for features like oriented 
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Fig. 4 | Quantitative results on ZEBRAFINCH dataset. Points in plots 
correspond to optimal thresholds from validation set. Each point represents an 
ROI. For VOI and MCM, lower scores are better; for ERL, higher scores are better. 
a, VOI sum versus ROI size (μm3). b, ERL (nanometers) versus ROI size. c,d, MCM 

sum and VOI sum versus ROI size (first three ROIs), respectively. Dashed line in  
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(as in a,b). f, Mask δ VOI sum versus ROI.
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bars, already produce relatively accurate boundaries in the first pass. 
Consequently, there is little incentive for the network to change course 
in the second pass. Translating from LSDs to affinities, on the other 
hand, is a comparatively different task, which forces the network to 
incorporate the features from the LSDs in the second pass. The subse-
quent boundary predictions seem to benefit from this.

One of the challenges of deep learning is to find representative 
testing data and metrics to infer production performance. This is 
especially challenging for neuron segmentation, considering the 
diversity of neural ultrastructure and morphology found in EM vol-
umes. While challenges like CREMI and SNEMI3D (http://brainiac2.
mit.edu/SNEMI3D) make an effort to include representative training 
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and testing data, the implications for model performance on larger 
datasets are not straightforward. Our results suggest that testing on 
small volumes provides limited insight into the quality of a method 
when applied to larger volumes. For example, the total volume of the 
three CREMI testing datasets (~1,056 μm3) is still less than the smallest 
ZEBRAFINCH (~1,260 μm3) and HEMI-BRAIN (~1,643 μm3) ROIs. In this 
context, it seems difficult to declare a clear ‘winner’ when it comes to 
neuron segmentation accuracy. Dataset sizes and the choice of evalua-
tion metrics greatly influence which method is considered successful.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41592-022-01711-z.
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Methods
LSDs
Intuitively, the LSD components encourage the neural network to 
make use of its entire field of view (FOV) to reach a decision about 
the presence or absence of a boundary in the center of the field of 
view. Trained on a boundary prediction task alone (that is, pure 
affinity-based methods), a neural network might focus only on a few 
center voxels to detect membranes and achieve high accuracy dur-
ing training, especially if trained using a voxel-wise loss. However, 
this strategy might fail in rare cases where boundary evidence is 
ambiguous. Those rare cases contribute little to the training loss, 
but given the large size of datasets in connectomics, those cases still 
result in many topological errors during inference. If, however, the 
network is also tasked to predict the local statistics of the objects 
surrounding the membrane, focusing merely on the center voxels is 
no longer sufficient. Instead, the network will have to make use of its 
entire field of view to predict those statistics. We hypothesize that 
this leads to more robust internal representations of objects, allow-
ing the network to infer membrane presence from context, even if 
the local evidence is weak or missing. Many local object statistics 
are conceivable that would incentivize the network to use its entire 
field of view. Here, we focus on simple statistics that are efficient to 
compute during training.

More formally, let Ω ⊂ ℕ3 be the set of voxels in a volume and 
y: Ω ↦ {0,…,l} a ground-truth segmentation. A segmentation induces 
ground-truth affinity values affyN, defined on a voxel-centered neighbor-
hood N ⊂ ℤ3, that is:

affyN ∶ Ω ↦ {0, 1}|N| affyN(v) = (δy(v)=y(v+n)≠0|n ∈ N) (1)

where δ is the Kronecker function, that is, δp = 1 if predicate p is true 
and 0 otherwise. Our primary learning objective is to infer affinities 
from raw data x ∶ Ω ↦ ℝ, that is, we are interested in learning  
a function:

affxN ∶ Ω ↦ [0, 1]|N| (2)

such that affxN(v) ≈ affyN(v).
Similarly to the affinities, we introduce a function to describe the 

local shape of a segment i ∈ {1, …, l} under a given voxel v. To this end, 
we intersect the segment y(v) underlying a voxel v ∈ Ω with a 3D ball 
of radius σ centered at v to obtain a subset of voxels Sv ⊂ Ω, formally 
given as:

Sv = {v′ ∈ Ω | y(v) = y(v′), |v − v′|22 ≤ σ} . (3)

We describe the shape of Sv by its size, mean coordinates and the 
covariance of its coordinates, that is:

s(Sv) = |Sv| (4)

m(Sv) =
1

s(Sv)
∑
v∈Sv

v (5)

c(Sv) =
1

s(Sv)
∑
v∈Sv

(v −m(Sv)) (v −m(Sv))
T. (6)

The LSD lsdy ∶ Ω ↦ ℝ10 for a voxel v is a concatenation of the size, 
center offset and coordinate covariance, that is:

lsdy(v) =
⎛
⎜
⎜
⎝
s(Sv),⏟
size

m(Sv) − v,⏟⎵⎵⏟⎵⎵⏟
center offset

c(Sv)⏟
covariance

⎞
⎟
⎟
⎠
. (7)

We use lsdy(v) to formulate an auxiliary learning task that comple-
ments the prediction of affinities. For that, we use the same neural 
network to simultaneously learn the functions affx: Ω ↦ [0, 1]∣N∣ and 
lsdx ∶ Ω ↦ ℝ10 directly from raw data x, sharing all but the last convolu-
tional layer of the network.

For efficient computation of the target LSDs during training, 
the statistics above can be implemented as convolution operations 
with a kernel representing the 3D ball: Let bi: Ω ↦  {0, 1} with 
bi(v) = δy(v)=i be the binary mask for segment i and w ∶ ℤ3 ↦ ℝ a kernel 
acting as a local window (for example, a binary representation of a 
ball centered at the origin, w(z) = δ|z|22≤σ). The aggregation of this mask 
over the window yields the local size si(v) of segment i at position v. 
Formally, this operation is equal to a convolution of the binary mask 
with the local window:

si(v) = ∑
v′∈Ω

bi(v′)w(v − v′) = (bi ×w)(v). (8)

To capture the mean and covariance of coordinates as defined above, 
we further introduce the following voxel-wise functions m and c. Those 
functions aggregate the pixel coordinates v over the local window w 
to compute the local center of mass mi(v) and the local covariance of 
voxel coordinates ci(v) for a given segment i:

mi
k(v) =

(vkbi×w)(v)
(bi×w)(v)

k ∈ {x, y, z}

cikl(v) =
(vkvlbi×w)(v)
(bi×w)(v)

−mi
k(v)m

i
l(v) k, l ∈ {x, y, z}

(9)

To obtain a dense volume of shape descriptors, we compute the 
above statistics for each voxel with respect to the segment this voxel 
belongs to. Formally, we evaluate for each voxel v:

̃s(v) = sy(v)(v) (10)

m̃(v) = (my(v)
x (v),my(v)

y (v),my(v)
z (v))) (11)

c̃(v) = (cy(v)xx (v), cy(v)yy (v),… , cy(v)xz (v), cy(v)yz (v)) (12)

to obtain an equivalent formulation:

lsdy(v) = ( ̃s(v), m̃(v) − v, c̃(v)). (13)

Network architectures
We implement the LSDs using three network architectures. The first 
is a multitask approach, MTLSD, in which the LSDs are output from a 
3D U-NET38, along with nearest neighbor affinities in a single pass. The 
other two methods, ACLSD and ACRLSD, are both auto-context setups 
in which the LSDs from one U-NET are fed into a second U-NET to pro-
duce the affinities. The former relies solely on the LSDs while the latter 
also sees the raw data in the second pass (Fig. 1e). We trained networks 
using gunpowder (http://funkey.science/gunpowder) and TensorFlow 
(https://www.tensorflow.org/), using the same 3D U-NET architecture39.

Post-processing
For affinity-based methods, prediction and post-processing (that 
is, watershed and agglomeration) used the method described in the 
previous work39. We first passed raw EM data through the networks to 
obtain affinities. We then thresholded the predicted affinities to gen-
erate a binary mask. We computed a distance transform on the binary 
mask and identified a local maxima. We used the maxima as seeds for 
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a watershed algorithm to generate an oversegmentation (resulting in 
supervoxels). We stored each supervoxel center of mass as a node with 
coordinates in a region adjacency graph (RAG). All nodes of touch-
ing supervoxels were connected by edges, which were added to the 
RAG. In a subsequent agglomeration step, edges were hierarchically 
merged using the underlying predicted affinities as weights, in order 
of decreasing affinity, until a given threshold (obtained through a line 
search on validation data). We extended this method to run in parallel 
using daisy (https://github.com/funkelab/daisy).

For the FFN network, it was not possible to conduct a standard-
ized comparison owing to the computational power and expertise 
required to implement the method on the evaluated datasets. Since 
we were provided with a single segmentation (per dataset)40, it is not 
clear what dataset-specific optimizations were done, given that these 
were production-level segmentations. It is also likely that newer and 
better FFN segmentations now exist that were not available to compare 
against at the time we conducted the experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets analyzed and/or generated during this study (raw data, 
training data and segmentations) are publicly available (see the ‘Data 
download’ notebook on https://github.com/funkelab/lsd). Source data 
are provided with this paper.

Code availability
The code used to train networks and segment neurons is available 
in the ‘LSD’ repository, https://github.com/funkelab/lsd. Code used 
to evaluate the results is available in the ‘funlib.evaluate’ repository, 
https://github.com/funkelab/funlib.evaluate. All code is free for use 
under the MIT license.
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Extended Data Fig. 1 | Overview of the proposed MCM. Overview of the 
proposed MCM. A. Simple case. Two ground-truth skeletons are contained inside 
an erroneously merged segment. Dashed lines represent supervoxel boundaries 
and the closest skeleton nodes need to be split to resolve the merge (1). A min-cut 
is performed (2), resulting in a new segment (3). B. Complex case. Two skeletons 

are contained in a falsely merged segment as before (1), but the supervoxels are 
more fragmented. A min-cut is performed (2), resulting in a new segment (3). 
However, two nodes contained within the original segment need to be split.  
A second min-cut is performed (4), which produces another segment (5).  
This results in an additional split error caused by the original cut.

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | Quantitative results on HEMI and FIB-25 datasets. 
Quantitative results on Hemi and FIB-25 datasets. Plot curves show results over 
range of thresholds. Points correspond to optimal thresholds on testing set, no 
validation set was available. Lower scores are better. Top row. Hemi dataset. Plot 

curves show results over range of thresholds for each ROI (A = 12 μm ROI, B = 17 
μm ROI, C = 22 μm ROI). Bottom row. FIB-25 dataset. D. Full testing ROI. E,F. Two 
sub ROIs contained within full ROI.
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Extended Data Fig. 3 | Effects of auto-context architecture. Effects of auto-context architecture. ZEBRAFINCH, benchmark ROI, VoI split versus VoI merge, auto-
context comparison.
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major computational effort.

Randomization N/A

Blinding N/A

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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